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A N APPARENT weakness in the arguments within the
derivation of [1] (Appendix) is identified using explicit

numerical examples which further demonstrate that the results are of
limited benefit.

Our prior experience in specifying linear system realizations [2,3]
alerted us to an apparent problem with the new alternative procedure
offered in [1] (Appendix) as a potentially more straightforward way
to achieve amulti-input multi-output linear system realization from a
matrix power spectrum or, equivalently, from a given matrix
correlation function by explicitly delineating both the structure and
parameter values of an underlying white noise driven linear time-
invariant state variable model that provides such a vector random
process as its output.

The arguments for the derivation of thematrix Lyapunov equation
(which the variance/cross-covariancematrix satisfies†) ([5], pp. 222–
226) are quite familiar to many analysts but fall short in Jekeli’s
attempt to extend them in its overly concise but appealing result,
where Eq.A4 equates a function of one variable on the left-hand side‡

to a function of two variables on the right-hand side as an obvious
impossibility.

Among the beneficial results offered in [2,3], is a nondegenerate
statistically stationary two-channel numerical example§:
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where these second-order statistics correspond to a demonstrable
closed-form solution both for the intermediate (nonunique [3])
matrix spectral factorization (MSF):

WT�s� �
�s��

��
7
p
=2�

�2�s��1�s�
�1=2

�2�s��1�s�
�s��

��
7
p
=2�

�2�s��1�s�
3=2

�2�s��1�s�

" #
�H�sI � F��1G (2)

(where details of accomplishing the MSF here are provided in [2],
Appendix B) and for the resulting associated linear system
realization:
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and

y�t� �H1x�t� �
1 0 0 0
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� �
x�t� (4)

which is of the form

d

dt
x�t� � Fx�t� �Gw0�t� and y�t� �Hx�t� (5)

and the correspondingQ≜ GGT . EquationA1 in [1] andEq. (5) here
differ slightly in that the zero mean Gaussian white noise process
w0�t� in Eq. (5) has the matrix identity as its covariance intensity
matrix but, otherwise, corresponds to the same second-order
statistics for y aswould be associated with Eq. A1,where y�t� � x�t�
for Eq. A1 (corresponding to H being the identity matrix). This
asserted solution as the linear system realization can easily be
confirmed to yield the matrix power spectrum of Eq. (1) merely by
using the right-hand expression of Eq. (2) and multiplying out the
results with the asserted parameter values of Eqs. (3) and (4) to again
yield the left-hand expression in Eq. (2), which, when further
multiplied out as WT��s�W�s� yields the power spectral matrix of
Eq. (1) as a crosscheck.

We now attempt to apply the steps for achieving a linear system
realization provided in [1] to the correlation function specified in
Eq. (1), where it is more convenient to use the time domain
representation in Eq. (1) instead. In attempting to take the derivative
of the correlation function of Eq. (1) to be evaluated at � � 0
(corresponding to limt!to ), as called for in Eq. A5, yields
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†Precise regularity conditions guaranteeing that the steady-state constant
symmetric positive definite matrix solution Px can be obtained from [1]
(Eq. A7) with dPx�t�=dt � 0 is that F have only eigenvalues with real parts
strictly negative and that �F;L� be a controllable pair, where Q� LLT (and
where L is a factor resulting from a Choleski decomposition of Q) [4].

‡In using this form, at this point in the derivation in [1], the assumption of
stationarity had not yet been invoked as a slight misstep of prematurely using
an assumption that is invoked later.

§The power spectrummatrix depicted here on the right-hand side of Eq. (1)
consists of elements represented in the frequency domain by the bilateral
Laplace transform, which relates to the Fourier transform via the substitution
s� |!.
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but this presents a problem because the terms constituting the
elements of thematrix, as a composite function, are not differentiable
at � � 0 because the absolute value of �, being j�j, itself is not
differentiable at the origin and we are stymied by being unable to
proceed any further using this approach. However, to illustrate what
further problems are to be encountered, suppose that an even more
benign matrix correlation function were being used such as that
corresponding to the familiar ergodic random process ([6], Chap. 9)
with both channels being independent, as a possible further
simplification, then we have

x1�t� � A sin�!t� ��; x2�t� � B sin�!t� �� (7)

withA,B, and! being deterministic nonzero constants, and � being a
zero mean random variable uniformly distributed over ���; �	. Its
matrix correlation function would be
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and, upon attempting to differentiate it with respect to � at � � 0, this
step can now be accomplished as
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and we are one step further but stuck again and unable to take the
approach of [1] to fruition. These two numerical examples are
extremely well behaved and exhibit all the properties of a valid
correlation function matrix ([3], Sec. IIB); however, they reveal the
weaknesses of this asserted new approach although the initial
covariances can be found for the preceding two examples,
respectively, as
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and as
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Because the means of both examples are zero vectors, here we have

Ryy�0�≜ E�x�to�xT�to�	 � Px�to� and in both examples the resulting
Px�to� is nonsingular and invertible.

Looking further at Eq. A5 [1] for what is needed to continue with
the preceding two examples to specify a corresponding F using the
newly posedmethodology, evenwith thematrixPx�to� specified and
nonsingular in both cases, one cannot proceed in specifying F from
Eq. A5 and, consequently, Eq. A8 is useless as well. However, if one
were attempting to solve Eq. A7 for the necessary constant Px�to�
using the standard prior approach, one first needs to know F and Q.
Although it is true that for a Kalman filtering situation, where any
symmetric positive definite matrix suffices for the initial condition
covariance to start integrating out the Riccati equation, which
exponentially asymptotically converges to the correct solution under
fairly mild regularity conditions [7] even if the exact initial
covariance matrix is unknown, an arbitrary symmetric positive
definite Px�to� hypothesized starting value does not necessarily
correspond to the steady-state solution of Eq. A7 (and the rate of
convergence in just integrating it out with time is much slower than
that of the somewhat similar looking Riccati equation) to obtain the
necessary final result for Px�to� that is needed to represent the
corresponding stationary random process. Hence, one cannot use
Eq. A5 to determine F and eventuallyQ from Eq. A8 for even these
two benign examples, which points to a rather severe limitation in
applicability of the new approach offered in [1] (Appendix).
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